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ABSTRACT Object detection is one of the most important topics in computer vision task and has obtained
impressive performance thanks to the use of deep convolutional neural network. For object detection,
especially in still image, it has achieved excellent performance during past two years, such as the series
of R-CNN which plays a vital role in improving performance. However, with the number of surveillance
videos increasing, the current methods may not meet the growing demand. In this paper, we propose a
new framework named moving-object proposals generation and prediction framework (MPGP) to reduce
the searching space and generate some accurate proposals which can reduce computational cost. In addition,
we explore the relation of moving regions in feature map of different layers and predict candidates according
to the results of previous frames. Last but not least, we utilize spatial-temporal information to strengthen the
detection score and further adjust the location of the bounding boxes. Our MPGP framework can be applied
to different region-based networks. Experiments on CUHK data set, XJTU data set, and AVSS data set, show
that our approach outperforms the state-of-the-art approaches.

INDEX TERMS Object detection, motion-probed proposals, proposals prediction, surveillance video, deep
neural network.

I. INTRODUCTION
Object detection, which is a classic branch of computer vision
tasks, plays an increasingly important role in the system of
intelligent video surveillance, automotive safety and robotics.
With the increasing number of surveillance videos, fast and
accurate object detection is urgently needed. Although many
researchers have proposed some solutions in the past decade,
there are still some challenges in object detection, such as
motion blur, video defocus and etc.

Recently, the performance of object detection is signif-
icantly improved thanks to the use of deep convolutional
neural network (CNN) [12]–[14], [23], especially, with the
development of the series of R-CNN [1]–[4] approaches.
These approaches integrate proposals generation into the
network which speed up the detection and achieve end-to-end
training. For example, the region proposal network (RPN) in
Faster R-CNN replaces the Selective Search [9] and shares
convolutional layers with detection networks. RPN starts
with exhaustive search essentially and it is not effective
to detect low-resolution objects. Moreover, these methods
are designed for object detection in still image. With the

increasing number of surveillance videos, how to robustly
and effectively detect objects in surveillance videos becomes
a problem, which demands a prompt solution.

Existing methods are committed to simplify the network to
speed up the detection [7], [8], [18] or to redesign networks
for extracting more robust features [4]. These performances
depend on the accuracy of proposals generation to a large
ext ent. For example, in [7], Redmon et al. treat object
detection as a regression problem and they predict proposals
in each grid. Although this method can speed up the detec-
tion process, the accuracy of bounding boxes is lower than
the RPN [3], [4] based approaches. Most importantly, these
methods cannot detect low-resolution objects. Furthermore,
since object detection is the basis of object re-identification,
the accuracy of the bounding boxes is significantly impor-
tant. In addition, the detection scores of the same pedes-
trian in adjacent frames may fluctuate which will affect the
object detection results. Motion blur, part occlusion, back-
ground change or video defocus may cause the fluctuation
of detection score. Hence, how to get stable object detection
performance in video sequences is a great challenge.
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Recently, the task on the object detection from video is
proposed. In [6], a framework for VID (ImageNet task on
object detection from video) was proposed. It combines still
image object detection with tracking for tubelets. However,
this framework is computationally expensive and time-
consuming. Because they not only detect objects in still image
which is implemented by R-CNN, but also track the objects
with high scores, which we call high-confidence objects.

This paper is motivated by the fact that current
methods [2], [3], [7], [8] often miss low-resolution objects
and the process of generating proposals are based on exhaus-
tive search which is resource consuming. We can use the
spatial-temporal information to generate suitable proposals
for object detection. Inspired by Faster R-CNN, we find that
the process of mapping proposals to feature map can save a
significant amount of time. Nevertheless, the RPN generates
proposals based on the full image at each frame, which is
a heavy workload. Moreover, Huang et al. [27] verified that
reducing the number of region proposals will speed up the
detection process and will not harm the detection a lot.

Considering that most of surveillance videos have
fixed background, therefore, we propose a Moving-Object
Proposals Generation and Prediction Framework (MPGP).
We design MPFP framework to generate accurate motion-
probed proposals and predict the locations of objects where
they are likely to occur in the next frame. Furthermore,
we adjust the locations and the scores of bounding boxes
in conjunction with the motion information and the spatial-
temporal information between adjacent frames.

The main contributions are summarized as follows:
1) We propose a network named MPNET for object detec-

tion in surveillance video, which is a deep neural network for
end-to-end object detection. Various objects such as vehicles
and pedestrians can be detected in a unified framework.

2) We propose a moving-object proposals generation and
confidence-based proposal prediction framework to find
precise proposals for object detection. The spatial-temporal
information in different feature maps is explored to obtain
the proposals of moving objects. It has the advantage to
probe small moving objects. The confidence-based proposal
prediction can reinforce object detection performance by
fusing the detection results in adjacent frames, which is robust
to the detection result variations. In our proposal genera-
tion framework, an adjustment process is proposed to accu-
rately localize objects. This makes our framework robust to
the objects with problems of low resolution and confidence
fluctuation etc.

3) Our framework can be applied to different kinds
of region-based deep neural networks, such as Faster
R-CNN and PVANET etc. Our experiments show that our
MPNET achieves state-of-art performance compared to other
methods. In addition, we propose an algorithm of refining the
initial detection results. In our proposed algorithm, we utilize
the relation between motion-probed bounding boxes and
predicted bounding boxes to suppress the false positives and
adjust the results of the true positives more accurately.

II. RELATED WORK
In the past decades, the hand-crafted features [15], [16],
[25], [26] have achieved great performance. For example,
the classic DPM algorithm [15] proposed a multi-scale
deformable part model, which achieved excellent perfor-
mance in 2009. However, with the development of CNN,
deep features, which learn from raw pixels, have demon-
strated superior performance. State-of-art object detection
methods are always based on deep convolutional neural
network [12]–[14], [23]. Current object detection methods
can be divided into two parts: region-based methods [1]–[5]
and region-free methods [7], [8], [18].

The series of R-CNN [1]–[4] are region-based detec-
tion methods which provided better solutions to robust
object detection. These methods can be classified into three
parts: CNN feature extraction, region proposals genera-
tion and classification. Girshick et al. [1] proposed R-CNN
for training deep convolutional feature to classify region-
based proposals. Fast R-CNN [2] fixes the disadvantage
of R-CNN [1] and SPPnet [5], which combined feature
extraction, classification and regression in a network for
training. However, Fast R-CNN still uses Selective Search [9]
to generate proposals. Although some optimized methods
for proposals generation were proposed [10], the network
is still not end-to-end. Therefore, Faster R-CNN [3] is
proposed to solve this problem. They proposed a Region
Proposals Network (RPN) to replace the Selective Search,
which achieved end-to-end training and test. Moreover, not
only the performance but also the speed of object detection
also improved a lot. Recently, some variants [4], [11] have
been proposed to further improve the performance of Faster
R-CNN, which are based on Faster R-CNN. For example,
in [11], multi-scale feature maps are combined for object
detection. Hong et al. [4] redesigned the feature extraction
part in Faster R-CNN with the principle of ‘‘less channels
with more layers’’. Moreover, concatenated rectified linear
unit (C.ReLU) [19] and inception [20] are used to reduce the
amount of computation.

Despite the better performance of object detection has
achieved, the detection process is also computational inten-
sive. So, some region-free methods, such as YOLO [7], [18]
and SSD [8], are proposed to speed up the detection process.
YOLO [7] divides an image into regular grids and predicts
locations based on these grids. Although the speed of YOLO
is faster than [1]–[4], its performance is worse than the perfor-
mance of Faster R-CNN.What’s worse, the methods based on
grid prediction will miss the objects if multiple objects are in
a grid. To solve this problem, SSD [8] combines different size
feature maps that generated by different convolutional layers.
In addition, it used small convolutional filters to predict
category score and box offsets. Kong et al. [24] proposed
a Reverse Connection with Objectness Prior Networks
to combine the region-based (e.g., Faster R-CNN) and
region-free methods (e.g., SSD). In [22], a deep feature
pyramid network is proposed to solve multi-scale
problems.
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FIGURE 1. Overview of MPGP-based Object Detection Network (MPNET). We propose MPGP framework to generate more accurate proposals and use
the spatial-temporal information to refine the initial detection results. We use black boxes to denote the motion-probed seeds and use red boxes to
denote the predicted proposals. The dotted lines denote the adjusted proposals of motion-probed seeds and low-confidence predicted proposals.
(a) is an object which generates proposals by moving-object proposals generation and confidence-based proposals prediction at the same time.
(b) is an object which generates proposals only by moving-object proposals generation. (c) is an object which generates proposals only by
confidence-based proposals prediction.

The methods mentioned above are based on still-image.
Recently, the ImageNet challenge on object detection from
video brings up a new question on how to solve the object
detection problems for videos robustly and effectively. Some
researches [6], [30]–[34], [36]–[42] incorporate spatial-
temporal information to enhance the performance of object
detection in video domain. For example, Kang et al. [6], [30]
proposed T-CNN to combine still-image object detec-
tion with object tracking, which utilizes optical flows to
predict bounding boxes to adjacent frame and then get
tubelets by tracking high-confidence boxes. This network
is multi-stage pipeline. FGFA [36] focuses on improving
feature quality through flow-guided feature aggregation.
The feature maps from nearby frames are warped to
the reference frame according to the flow. However, this
method is computational intensive compared to [3], [4], [8],
and [18]. Cascaded regional spatio-temporal feature-routing
networks (CRFN) [37] is proposed to incorporate the corre-
lation filter tracking on the convolutional feature maps. The
context information is utilized via a Look-Up-Table method
to suppress the conflicting false positives and guide the
detector to produce a semantically coherent interpretation on
the video. Huang and Chen [38] and Huang and Do [41]
proposed to combine a probabilistic background genera-
tion (PBG) module and a moving object detection (MOD)
module for moving object detection. The PBG module is
proposed to produce the probabilistic background model
in variable bit-rate video streams. The MOD module used
a block selection procedure to find the blocks belonging
to moving objects. In [39] and [42], Chen and Huang
proposed an approach to detect moving object in different
bit-rate video streams. Temporal dynamic graph Long Short-
Term Memory network (TD-Graph LSTM) [40] uses action

descriptions as supervision instead of using bounding boxes
to obtain the objects of interest. It recurrently propagates
the temporal context on a constructed dynamic graph struc-
ture for each frame, which helps alleviate the missing label
problem. The methods mentioned above are not dedicated
to solve the problem of missing small object and motion
blur.

Most state-of-art still-image object detection methods
are following the common pipeline of ‘‘CNN feature
extraction + region proposal generation + RoI classi-
fication.’’ Faster R-CNN [3] and PVANET [4] achieve
state-of-art performance in still-image object detection.
However, RPN, which is used to generate proposals in
Faster R-CNN and PVANET, always searches proposals
based on the full feature map. They are resource consuming
and neglect the spatial-temporal information in surveillance
videos. Therefore, we mainly redesign the region proposal
part.

III. THE PROPOSED APPROACH
A. DEEP OBJECT DETECTION FRAMEWORK OVERVIEW
Our MPGP-based Object Detection Network (MPNET) is
illustrated in Fig. 1. Our framework is a region-based
method and consists of the following three parts: 1) Deep
feature extraction. We fuse feature maps of the deep convo-
lutional layers to detect objects with various resolutions.
2) MPGP-based region proposal generation. We use our
MPGP to replace the RPN in other region-based methods to
generate some accurate proposals. 3) Region of interest (RoI)
classification and location adjustment. We classify the
proposals generated by MPGP and adjust location of the
bounding boxes to obtain the precise results. More details can
be discussed as follows.
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FIGURE 2. The process of generating motion-probed proposals.

B. DEEP FEATURE EXTRACTION
The input of our framework are the sequences of surveil-
lance videos. We extract deep feature using VGG16 or
PVANET feature extraction part, respectively. In Faster
R-CNN, it utilizes the transformed VGG16 network with
13 convolutional layers and 5 max-pooling layers to extract
feature. PVANETmainly redesigns the feature extraction part
with the principle of less channels with more layers. Just as
Fig.1 shown, our feature extraction is on the convolutional
layers (CL). Assume that the total number of CL isK ,K = 13
for VGG and 16 for PVANET.

We denote the feature map of frame n which is extracted
by k-th convolutional layer as F ik,n, i is the channel index of
the k-th convolution layer, k ∈ [1,K ]. Due to the pooling
process in CNN, the feature maps become smaller (with low
resolution) with the increasing of depth of the network. The
lower layers often contain local features while the deeper
layers contain global features. So, we can fuse the feature
maps with various resolution in adjacent frames to get various
spatial-temporal information for object detection in video.

C. PROPOSALS GENERATION FRAMEWORK
The small objects are more sensitive in lower layers while
the large objects can be complete detect in deeper layers.
Therefore, we explore multi-scale spatial-temporal informa-
tion from different convolutional layers.

We propose a MPGP framework to generate some accu-
rate proposals, which replace the RPN in Faster R-CNN
and PVANET etc region based CNN. In RPN, The input
of MPGP is the feature map produced by the last shared
conv layer. Unlike RPN which uses a sliding window
sliding in the feature map per pixel [3], [4], our frame-
work generates some accurate proposals according to the
motion-probed and predicted information. The exploration
of spatial-temporal information is divided into two aspects:
moving-object proposals generation and confidence-based
proposals prediction.

1) MOVING-OBJECT PROPOSALS GENERATION
In surveillance videos, objects can be divided into stationary
objects and moving objects. The proportion of moving
objects is relatively large. Therefore, it is essential to utilize
motion information to generate motion-probed proposals.
This method is more targeted compared to the methods of
searching proposals based on the whole image. The process
of generating motion-probed proposals is illustrated in Fig. 2.

It consists of two parts: coarse moving object detection and
motion-probed seeds (regions) adjustment analysis.

a: COARSE MOVING OBJECT DETECTION
For the frame n, we have obtained the feature maps F ik,n
through the forward propagation of a CNN. Then, we obtain
coarse seeds of moving objects according to the following
steps:

I) We get multi-scale spatial-temporal information based
on the corresponding feature map in adjacent two frames as
follows.

1F ik,n = F ik,n − F
i
k,n−1 (1)

where n, k , and i respective denote the frame, the k-th convo-
lutional layer, and the channel index, k ∈ [1,K ].
II) We get the normalized feature difference of the frame n

at the k-th layer by averaging all the channels as follows.

1Fk,n = (
m∑
i=1

|1F ik,n|)/m (2)

where m denotes the total number of the channels at layer k.

FIGURE 3. The necessity of extending motion seeds. (a) key frame;
(b) the binary image of frame difference; (c) motion-probed seeds;
(d) adjusted proposals.

III)We further take advantage of morphological filtering to
reduce the noise and stress moving areas on1Fk,n. The steps
of morphological filtering are given as follows: <i>We use
OTSU to distinguish the foreground of 1Fk,n from back-
ground, as shown in Fig. 3(b). OTSU is a threshold selection
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method from gray-level histograms.<ii>We carry out media
filtering on the binary image to remove isolated noise points.
<iii> We dilate the moving areas to stress the edge of the
moving objects. <iv> We mark these moving areas with
rectangle boxes and map these different size moving areas to
raw image as shown in Fig.3(c). We denote these candidates
got from coarse motion object detection as motion-seeds.
Motion-probed seed is a potential region which has high
probability to contain part of an object (including pedestrians,
vehicles, etc).

For all the K layers, we carry out the above three steps iter-
atively. Then we can get the objects at different resolutions.

b: MOTION-PROBED SEEDS ADJUSTMENT ANALYSIS
In surveillance videos, the appearance and the speed of
moving objects are diverse. For example, as shown in first
row of Fig. 3, the motion-probed seeds are smaller than the
pedestrian in black suit. This situation results from color-
invariance and small-motion. In this case, we need to enlarge
the area of motion-probed seeds and shift the center of the
seeds. In another case, as shown in the second row of Fig. 3,
the speed of the child riding a bike is fast. Therefore, the
motion-probed seed is bigger than the child and the center
of the seed shift from the center of the child. Since a motion-
probed seed can be a part of an object or an enlarged object,
we need to adjust proposals to get more accurate detection
results based on the coarse motion-probed seeds.

FIGURE 4. The adjustment analysis of motion-probed seeds.

Wepropose a seeds adjustmentmethod. As shown in Fig. 4,
this algorithm is consist of five steps:

I) We change the scale, aspect ratio and the center of
motion-probed seeds which are represented by the black solid
boxes as shown in the top-left of Fig.4. We use 3 aspect ratios
(1, 0.41, 2) [3], [35], 3 scales and 3 different center of seeds.
Therefore, we get 27 different transformed proposals.

II) We map those proposals from frame n to the last convo-
lutional feature map (K -th) proportionally to get the feature
blocks. More details can be learned in [2].

III) We use max pooling to normalize these feature blocks
to a fixed size (e.g., 7∗7). Each feature map channel apply
pooling independently.

IV) We use full connected layers to convert those
feature blocks to feature vectors to get global features with
4096 dimension.

V) Those feature vectors are fed into a classification
layer. The classification layer outputs the probability of the
proposals whether they are a foreground or a background.

VI) We use non-maximum suppression (NMS) to filter
out redundancy proposals. Since we use multi-scale feature
map to obtain motion-probed seeds, some of the proposals
represent a same object. Therefore, we need use NMS to
merge overlapping proposals for achieving the most accu-
rate proposals. The output is the adjusted motion-probed
proposals.

2) CONFIDENCE-BASED PROPOSALS PREDICTION
Due to the motion, illuminance variation, occlusion, pose
changing, etc problems, the detection scores (confidences)
of the same object in video sequences vary dramatically.
As shown in Fig. 5, the confidences of a same object
fluctuate dramatically at different frames. The Fig. 5 (a)
shows the confidences of a low-resolution object at each
frame. We find that most of the confidences are in the
range [0.1, 0.5] and only a small faction is higher than 0.5,
which are unstable. Moreover, Fig. 5 (b) shows the confi-
dences of a high-resolution object at each frame. Most of
confidences are stable between 0.9 and 1 while about 2%
scores are smaller than 0.9. From Fig. 5, we find that stable
object detection in surveillance videos is a challenge for small
objects and objects with occlusion, blur and etc. To solve this
problem, we propose a confidence-based proposal prediction
method based on the detection results of previous frames.
This approach can suppress the influence of confidence
fluctuation.

FIGURE 5. The fluctuations of object confidences between adjacent
frames.

We propose to utilize the detection results of the two
adjacent frames n-1 and n to predict the locations of objects
in frame n+ 1. The diagram is shown in Fig. 6. Based on the
proposals’ bounding boxes of frames n-1 and n, we get their
predicted coordinates of frame n + 1. When n = 1 and 2,
we generate proposals by RPN. When n is greater than 2,
if the confidence of the bounding box is high, we predict
the location of the bounding box in frame n + 1 directly.
In another case, if the confidence of the bounding box is low,
we need to adjust the box to prevent that the box is only a part
of the global or shifts from the object. The process of predic-
tion can be divided into two parts: high-confidence bounding
boxes prediction and low-confidence bounding boxes
prediction.
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a: HIGH-CONFIDENCE BOUNDING BOX PREDICTION
We suppose that the detection result is credible if the confi-
dence is greater than ts, such as the person in Fig. 6 (a) and the
car in Fig.6 (b). Therefore, we only predict the locations of the
objects where they would appear in the frame n+1 according
to their previous frames n−1 and n. The predicted width and
height of an object can be regarded as a linear transformation
from its adjacent frames n− 1 and n.

FIGURE 6. Confidence-based proposals prediction. The distance to the
camera and the accuracy of proposals will affect the confidences of
objects. We adopt different prediction methods according to the
confidence of the objects.

LetPn,b = {wn,b, hn,b, cxn,b, cyn,b denote thewidth, height
and the coordinates of the center of the b-th bounding boxes.
We predict the object location at frame n+ 1 as follows.

P(n+1),b = wn,b +1wn,b, hn,b
+ 1hn,b, cxn,b +1cxb, cyn,b +1cyb (3)

where 1wn,b = wn,b − w(n−1),b,1hn,b = hn,b − h(n−1),b.
In addition, 1cxn,b = cxn,b − cx(n−1),b and 1cyb = cyn,b −
cy(n−1),b are the relative motion of the proposal’s center in x
and y directions, respectively.

b: LOW-CONFIDENCE BOUNDING BOX PREDICTION
To get robust detection results, especially for low-resolution,
occlusion objects, we emphasis the low-confidence objects
verification with their confidences are in the range [tmin, ts],
such as the person in Fig. 6 (c).

First, we predict the locations of the objects in the next
frame according to Eq. (3). Then, we adjust the predicted
boxes through changing the scale, aspect ratio and the center
of predicted boxes. The adjustment method is same as which
we discuss in the section of the motion-probed seeds adjust-
ment analysis.

D. THE RoI CLASSIFICATION AND LOCATION
ADJUSTMENT
From themoving-object proposals generation and confidence-
based proposals prediction process, we generate a set of

object proposals with different sizes. Let < = {RMn ,R
P
n

denote the initial detection results of frame n, where
RMn and RPn denote the initial detection results of motion-
probed proposals and predicted proposals, respectively.
We combine and adjust the initial object detection results to
get final results.

We first map those proposals to the last convolutional
feature map (K -th) proportionally to get the feature blocks.
Then we utilize the RoI pooling layer to convert the feature
blocks into a fix size (e.g., 7 ∗ 7 in [2]). This step is shown
in the top-right part of Fig.1. Then, each fixed-size feature
map is pushed into two full-connected layers to extract global
feature vector with 4096 dimension [3]. Next, this vector is
fed into two sibling layer—an object classification layer and
a box-regression layer. The box-regression layer outputs 4
dimension coordinate of boxes while the classification layer
outputs the probability of objects.

We define RMn,i =
{
lMn,i, t

M
n,i, r

M
n,i, b

M
n,i

}
and RPn,j ={

lPn,j, t
P
n,j, r

P
n,j, b

P
n,j

}
, where {ln, tn, rn, bn, sn} represents the

top-left corner (ln, tn) and bottom-right corner (rn, bn). Let
sMn,i and s

P
n,j represent the score of the motion-probed box i

and predicted box j, respectively. LetOn,i,j denote the overlap
ratio of motion-probed boxes and predicted boxes.

To determine whether the bounding box containing
object or not, the following three case is taken into account.

1) We consider that the object in the bounding box is a
true positive if the motion-probed box has high overlap rate
with the predicted box and at least one score of the two
bounding boxes is high. Therefore, we refine the location of
the bounding box.

2) We consider the object is a false positive if the overlap
ratio is high but the scores are low. In this case, we suppress
the detection score.

3) The remaining bounding boxes with high confidence
are the complementary part of motion-probed boxes and
predicted boxes. We consider they are true positives, such as
object (b) and object (c) in Fig. 1.

According to the situations mentioned above, we propose
a location adjustment method to improve the performance
of the initial detection results. The details are given in
Algorithm 1. The specific procedures are as follows:
Step 1: We compute the overlap ratios of motion-probed

boxes and predicted boxes according to Eq. 4.

On,i,j =
area(RMn ∩ R

P
n )

area(RMn ∪ RPn )
(4)

where area(x) denotes the area of region x.
If overlap ratios are greater than θ (θ = 0.5) and at least one

score of the two bounding boxes is greater than ts, then we go
to Step 2. If overlap ratios are greater than θ but the scores
are both smaller than tmin, then we go to Step 3. If a bounding
box has low overlap ratios with other bounding boxes and its
score is greater than ts, we maintain the coordinates and the
scores of the bounding boxes.
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Algorithm 1 Initial Results Refinement
Input: The initial detection results of motion-probed

proposals and predicted proposals
Output: The adjusted detection results
N is the number of motion-probed boxes
K is the number of predicted boxes
for j = 1 to N do
for i = 1 to K do
compute the overlap ratio On,i,j
if On,i,j > θ & (sPn,j > ts or sMn,j > ts) then
strengthen score and precise location by Eq.5-9

elif On,i,j > θ&(sPn,j < tmin&sMn,j < tmin) then
suppress the detection score by Eq.10
end if

end for
end for
add the complementary part

Step 2: We adjust the location of the object according to
the confidences of both RMn,i and R

P
n,j by a weighted linear

estimation as follows:

ln =

{
α ∗ lMn,i + (1− α) ∗ lPn,j, IfsPn,j > sMn,i
(1− α) ∗ lMn,i + α ∗ l

P
n,j, IfsPn,j < sMn,i

(5)

tn =

{
α ∗ tMn,i + (1− α) ∗ tPn,j, IfsPn,j > sMn,i
(1− α) ∗ tMn,i + α ∗ t

P
n,j, IfsPn,j < sMn,i

(6)

rn =

{
α ∗ rMn,i + (1− α) ∗ rPn,j, IfsPn,j > sMn,i
(1− α) ∗ rMn,i + α ∗ r

P
n,j, IfsPn,j < sMn,i

(7)

bn =

{
α ∗ bMn,i + (1− α) ∗ bPn,j, IfsPn,j > sMn,i
(1− α) ∗ bMn,i + α ∗ b

P
n,j, IfsPn,j < sMn,i

(8)

sn = max{sPn,j, s
M
n,i} (9)

where α = sn/(sPn,j + s
M
n,i).

Step 3:We suppress the initial detection score according to
Eq. (10).

sn = min{sPn,j, s
M
n,i} (10)

IV. EXPERIMENTS
In this section, we evaluate our framework for object
detection in surveillance video on AVSS dataset [28],
CUHK dataset [21] and our XJTU dataset. In surveillance
videos, vehicle and pedestrian are the mainly concerned
objects. We evaluate these two classes at different datasets.
We evaluate our method for pedestrian detection on two
dataset: XJTU Dataset and CUHK Square Dataset with four
competitive models: Faster R-CNN [3], YOLO9000 [18],
SSD [8], PVANET [4] while vehicle detection on AVSS
dataset with five competitive models: Faster R-CNN [3],
YOLO9000 [18], SSD [8], PVANET [4], FGFA [36]. These
four methods obtain excellent performance on object detec-
tion and codes are available. MPNET (Faster R-CNN)

and MPNET (PVANET) are our proposed object detection
approaches based on Faster R-CNN (VGG16) and PVANET.

Our framework is implemented based on the deep learning
framework Caffe and run on a workstation configured with
an NVIDIA GTX 1070. We train our network on PASCAL
VOC2007.

A. DATASETS
1) CUHK SQUARE DATASET [21]
It is a traffic video sequence of which lasts 60 minutes long
and is recorded by a stationary camera. The resolution of
frames is 720∗576. Wang et al. [21] provide some ground
truth of pedestrians at some sampled frames, which is consist
of 352 images for train and 100 images for test. However,
there are some error labels in public ground truth. In addition,
some pedestrians are missing in public ground truth. There-
fore, wemodify the ground-truth and addmore annotations of
more frames. We mark 3622 frames for pedestrian detection
task.

2) AVSS DATASET [28]
It is a surveillance video sequence of traffic road. The resolu-
tion of frames is 720∗576 pixels. The video sampling rate is
25Hz. We mark 1008 frames for vehicle detection task.

3) XJTU DATASET
This dataset is collected by Smiles LAB. We collected
surveillance videos of six representative places in campus
for pedestrian detection and retrieval task. Every scene has
five sequences and each video sequence lasts 10 minutes.
The resolution of the video is 1080p, 20fps. We mark
36,000 frames for pedestrian detection task. This dataset
contains the problem of motion blur, occlusion and low-
resolution, which is a new challenge for object detection in
surveillance video.

B. EVALUATION OF OBJECT DETECTION
The object detection evaluation criterion is same as PASCAL
VOC object detection [17]. Our task is judged by preci-
sion/recall curve. The principal quantitative measure is the
average precision (AP). The AP summaries the shape of the
precision-recall curve and calculate as Eq. 11-12. The overlap
is set as 0.5 to evaluate the true positives.

AP =
1
11

∑
r∈{0,0.1,...,1}

pinterp(r) (11)

pinterp (r) = max
r̃ :r̃≥r

p(r̃) (12)

where p(r̃) is the measured precision at recall r̃ .

C. COMPARISON RESULTS
1) PERFORMANCE ON PEDESTRIAN DETECTION
The proposed framework is evaluated on the CUHK Square
dataset and XJTU dataset. Table 1 and Fig. 7 show the
overall experimental results on CUHK Square dataset. From
Table 1, we can see that our framework outperforms other
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TABLE 1. Detection results on CUHK dataset.

FIGURE 7. The recall-precision curve of pedestrian detection in CUHK
dataset.

algorithms. In aspect of average precision, our method gains
of 4.32% compared to the Faster R-CNN and gains of
18.33% compared to PVANET. In addition, our MPNET
method based on Faster R-CNN obtains the state-of-art
performance compared to SSD and YOLO9000. In aspect
of computing time, our method achieves a slight decrease
compared to Faster R-CNN and PVANET. We achieve a
balance between average precision and detection speed.

TABLE 2. Detection results on XJTU dataset.

Table 2 and Fig. 8 show the performance on XJTU
dataset. We can find that our method MPNET (Faster

FIGURE 8. The recall-precision curve of pedestrian detection in XJTU
dataset.

R-CNN) achieves 2.15% gain compared to Faster R-CNN
and MPNET (PVANET) achieves 0.37% gain compared
to PVANET. In addition, our MPNET (PVANET) method
achieves 42.86% and 23.93% gains compared to YOLOv2
and SSD. In aspect of detection time, our MPNET (VGG16)
achieves 0.02s decrease compared to Faster R-CNN and
MPNET (PVANET) achieves 0.019s decrease compared to
PVANET.

2) PERFORMANCE ON VEHICLE DETECTION
Our proposed framework is evaluated on the AVSS dataset.
Table 3 and Fig. 9 show the overall experimental results on
AVSS dataset. From Table 3, we can see that our framework
outperforms other algorithms. In aspect of average preci-
sion, our MPNET (Faster R-CNN) method gains of 9.83%
compared to the Faster R-CNN and MPNET (PVANET)
gains of 2.34% compared to PVANET. In addition, our
MPNET method achieves state-of-art performance. The
detection time also decreases compared to region-based
methods. For example, the detection time of MPNET
(Faster R-CNN) decreases 0.02s compared to Faster R-CNN.

TABLE 3. Detection results on AVSS Dataset.
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FIGURE 9. The recall-precision curve of vehicle detection in AVSS dataset.

We attempt to compare our method with FGFA [36], which
also use spatial/temporal info. The average precision (AP) of
FGFA is 23.32% with the time of 0.40s, which is 65.48%
lower than MPNET (PVANET).

3) SUBJECTIVE PERFORMANCE
As shown in Fig. 10 and Fig. 11, we can find that the methods
based on Deep Convolutional Neural Network are robust to
detect the objects with high-resolution. However, they are
not robust to the objects with low-resolution or occlusion.
Our method is effective to solve these problems as shown
in Fig. 10(d) and Fig.11 (d).

As shown in Fig. 12, the performance of our MPNET
(Faster R-CNN) is better than the performance of
Faster R-CNN. In addition, the performance of our
MPNET (PVANET) is better than the performance of
PVANET. Especially, the distant vehicles with low-resolution
always miss in Faster R-CNN. However, our method
performs well. In addition, the precision of the bounding
boxes are greater than other methods. For example, the
location of black car in Fig.12 (g) is more accurate than
the location of red car in Fig.12 (e). By observing the
detection results, we find that FGFA is not robust in some
surveillance videos. This is due to the following reasons.
Firstly, some objects are continuously missed in the process
of detection due to the variation of detection results in
adjacent (nearby) frames. In FGFA, the feature maps from
nearby frames are warped to the reference frame according
to the flow motion. Therefore, it could be a reason which
results in continuous miss. In order to solve this problem,
we fuse moving-object proposals generation and prediction
because they are complementary to obtain most of objects.
We propose the confidence-based predictionmethod to obtain
stationary objects continuously and solve the fluctuation

between adjacent frames. Secondly, due to camera angle and
motion blur, there are some erroneous detection results. As
shown in Fig. 12(b), the location of some bounding boxes are
not accurate. In our method, our proposals generation frame-
work is more accurate than the methods search on the whole
frame, which can avoid generating unsuitable proposals.
Finally, some distant objects are always missed due to the
low-resolution of the distant objects. Therefore, the detection
results don’t have excellent performance. So we propose
to enhance the detection results by fusing the moving-
objects detection results and the predicted detection results,
which strengthen the true positive and suppress the false
positive.

V. DISCUSSIONS
A. IMPACT OF ts
ts is the threshold to distinguish high-confidence bounding
box and low-confidence bounding box. The experiments
in Table 4 show that ts = 0.5 achieves the best performance.
When ts is greater than 0.5, AP decreases. This results from
that unnecessary adjustment may cause inaccurate proposals.
Therefore, when ts is greater than 0.5, most of the boxes
need to be adjusted, which is redundant and cannot achieve
the best performance. When ts is lower than 0.5, AP also
decreases. Some bounding boxes with low-confidences are
often with the problem of illuminance variation, occlusion,
etc. Therefore, if we do not adjust the locations, these objects
will not be detected accurately. We discuss the influence of ts
using MPNET (PVANET) in AVSS dataset.

TABLE 4. Impact of ts in AVSS dataset.

B. IMPACT OF tmin
tmin(tmin < ts) is the lower limit of low-confidence
bounding box and the threshold to suppress the false positive.
We discuss the influence of tmin using MPNET (PVANET)
in AVSS dataset. From Table 5, we find that tmin = 0.3
achieve the best performance. When tmin is greater than 0.3,
the AP decreases. The reason is that some objects with low
confidence are limited to predict and some bounding box are
suppressed which may be the true positive. In other case,
when tmin is lower than 0.3, AP decreases. This result from
inaccurate proposals generated by unnecessary adjustment
and invalid suppression.

TABLE 5. Impact of tmin in AVSS dataset.
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FIGURE 10. The comparison of four methods in XJTU Pedestrian dataset for pedestrian detection. (a) YOLO9000. (b) (b) SSD512. (c) (c) Faster
R-CNN. (d) (d) PVANET. (e) MPNET(Faster R-CNN). (f) MPNET(PVANET).

C. IMPACT OF MOVING-OBJECT
PROPOSALS GENERATION
Since our MPGP framework can be divided into moving-
object proposals generation and confidence-based proposals
prediction, we discuss the influence of the two parts, respec-
tively. Our experiments evaluate in AVSS dataset. As shown
in Table 6, if we only use the moving-object proposals gener-
ation to generate proposals (M-NET), the average precision
of M-NET (Faster R-CNN) is only 38.98% while the average
precision of M-NET (PVANET) is only 53.12%. This results
from losing some stationary objects and the influence of fluc-
tuations. When we add the prediction part, the AP increases
12.02% and 35.68%, respectively. This experiment shows
that these two parts are inseparable. They can help each other
to improve the performance.

TABLE 6. Impact of moving-object proposals generation.

TABLE 7. Impact of confidence-based proposals prediction.

D. IMPACT OF CONFIDENCE-BASED
PROPOSALS PREDICTION
As mentioned above, our confidence-based proposals predic-
tion method can solve the problem of confidence fluctuation.
In order to improve the effectiveness of our confidence-
based proposals prediction method, we combine Faster
R-CNN and PVANET with our confidence-based proposals
prediction method, which we named Faster R-CNN+P and
PVANETX+P, respectively. Our experiments evaluate in
AVSS dataset. The experiments show that we achieve 7.88%
gain compared to Faster R-CNN and 2.12% gain compared
to PVANET.
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FIGURE 11. The comparison of four methods in CUHK Square dataset for pedestrian detection. (a) YOLO9000. (b) SSD512.
(c) Faster R-CNN. (d) PVANET. (e) MPNET(Faster R-CNN). (f) MPNET(PVANET).

E. IMPACT OF MOTION-PROBED SEEDS
ADJUSTMENT ANALYSIS
As mentioned above, we need to adjust the motion-probed
seeds since the appearance and the speed of moving
objects are diverse. We discuss the influence of adjust-
ment analysis in AVSS dataset. From Table 8, we can
find that the average precision of MPNET (Faster R-CNN)
increases 1.15% compared to MPNET (Faster R-CNN)
without adjustment analysis. In addition, average precision of
MPNET (PVANET) increases 0.23% compared to MPNET
(PVANET) without adjustment analysis.

TABLE 8. Impact of motion-probed seeds adjustment.

F. IMPACT OF MULTI-SCALE NEURAL FEATURES
We discuss the influence of the multi-scale features in
AVSS dataset. From Table 9, we can find that the average

TABLE 9. The comparison of single-scale and multi-scale features.

precision (AP) of single-scale is lower than the AP of
multi-scale, which we use five different-size feature maps.
We use Convk to represent the feature maps between the
k-th pooling layer and the (k-1)th pooling layer to extract
moving objects, which have the same size. The AP of MPET
(Faster R-CNN) with multi-scale increased 1.23% compared
to theAP ofMPNET (Faster R-CNN)which only uses Conv1.
The AP of MPET (PVANET) with multi-scale increased
3.43% compared to the AP of MPNET (PVANET) which
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FIGURE 12. The comparison of our methods and other methods in AVSS Square dataset for vehicle detection.
(a) YOLO9000. (b) FGFA. (c) SSD300. (d) SSD512. (e) Faster R-CNN. (f) PVANET. (g) MPNET(Faster R-CNN).
(h) MPNET(PVANET).

only uses Conv1. In addition, we can see that the AP grows
as the number of converged layers increases. Therefore,
from Table 9, we can find that the frame differences over
multi-scale neural features are better than the single scale
counterpart.

VI. CONCLUSION
In this paper, we propose a Moving-object Proposals Gener-
ation and Prediction Framework (MPGP) to use spatial-
temporal information to generate high-confidence proposals
for object detection in surveillance videos. We explore the
spatial-temporal in different convolutional layers to achieve
accurate moving-object proposals. Experiments show that
our moving-object detection proposals generation and
confidence-based proposals prediction are complementary
and all contribute to performance improvements. Only use

one of the two parts cannot play the greatest role. In addi-
tion, we propose a proposals adjustment method, which is
also effective to improve the detection results. We refine the
results which contributes to the location precision of true
positive and the suppression of false positives. Compared
to traditional methods and other deep networks, our method
shows superior performance in average-precision.
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